Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Neuroendocrinology ; 113(2): 208-215, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35051936

RESUMO

Magnetic resonance imaging (MRI) brain analysis is used in rodents and for clinical investigation in humans, and it becomes also possible now for large animal models studies. Specific facilities are available with clinical scanners and benefit to neuroendocrine investigations in sheep. Sheep has a large gyrencephalic brain and its organization is very similar to primates and human, and among physiological regulations, oestrous cycle of the ewes is similar to women. Therefore, this animal is a good model for preclinical researches using MRI, as illustrated with steroids impact on the brain. New data were obtained concerning the effect of sexual steroids on neuronal networks involved in the control of reproduction and in the influence of sexual steroids on cognition. In addition to the importance of such data for understanding the role of these hormones on brain functions, they give new insights to consider the sheep as a powerful model for preclinical studies in the field of neuroendocrinology. These points are discussed in this short review.


Assuntos
Hormônios , Sistemas Neurossecretores , Animais , Ovinos , Feminino , Humanos , Sistemas Neurossecretores/fisiologia , Encéfalo/diagnóstico por imagem , Esteroides , Imageamento por Ressonância Magnética/métodos
2.
Neuroendocrinology ; 113(2): 193-207, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35066506

RESUMO

BACKGROUND: Selenoprotein T (SELENOT), a PACAP-regulated thioredoxin-like protein, plays a role in catecholamine secretion and protects dopaminergic neurons. However, the role of SELENOT in the establishment of the catecholaminergic (CA) neuronal system is not known yet. METHODS: We analyzed by immunohistochemistry and RNAscope in situ hybridization the distribution of SELENOT and the expression of its mRNA, respectively. In addition, 3D imaging involving immunostaining in toto, clearing through the iDISCO+ method, acquisitions by light-sheet microscopy, and processing of 3D images was performed to map the CA neuronal system. A semi-automatic quantification of 3D images was carried out. RESULTS: SELENOT protein and mRNA are widely distributed in the mouse brain, with important local variations. Three-dimensional mapping, through tyrosine hydroxylase (TH) labeling, and semi-automated quantification of CA neurons in brain-specific SELENOT knockout mice showed a significant decrease in the number of TH-positive neurons in the area postrema (AP-A2), the A11 cell group (A11), and the zona incerta (ZI-A13) of SELENOT-deficient females, and in the hypothalamus (Hyp-A12-A14-A15) of SELENOT-deficient females and males. CONCLUSION: These results showed that SELENOT is diffusely expressed in the mouse brain and that its deficiency impacts CA neuron distribution in different brain areas including Hyp-A12-A14-A15, in both male and female mice.


Assuntos
Imageamento Tridimensional , Neurônios , Camundongos , Feminino , Masculino , Animais , Neurônios/metabolismo , Encéfalo/metabolismo , Hibridização In Situ , Camundongos Knockout , RNA Mensageiro/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
3.
Anal Bioanal Chem ; 414(26): 7623-7634, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36063171

RESUMO

Gonadotropin-releasing hormone isoform I (GnRH), a neuro-deca-peptide, plays a fundamental role in development and maintenance of the reproductive system in vertebrates. The anomalous release of GnRH is observed in reproductive disorder such as hypogonadotropic hypogonadism, polycystic ovary syndrome (PCOS), or following prenatal exposure to elevated androgen levels. Quantitation of GnRH plasma levels could help to diagnose and better understand these pathologies. Here, a validated nano-high-performance liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS) method to quantify GnRH in ewe plasma samples is presented. Protein precipitation and solid-phase extraction (SPE) pre-treatment steps were required to purify and enrich GnRH and internal standard (lamprey-luteinizing hormone-releasing hormone-III, l-LHRH-III). For the validation process, a surrogate matrix approach was chosen following the International Council for Harmonisation (ICH) and FDA guidelines. Before the validation study, the validation model using the surrogate matrix was compared with those using a real matrix such as human plasma. All the tested parameters were analogous confirming the use of the surrogate matrix as a standard calibration medium. From the validation study, limit of detection (LOD) and limit of quantitation (LOQ) values of 0.008 and 0.024 ng/mL were obtained, respectively. Selectivity, accuracy, precision, recovery, and matrix effect were assessed with quality control samples in human plasma and all values were acceptable. Sixteen samples belonging to healthy and prenatal androgen (PNA) exposed ewes were collected and analyzed, and the GnRH levels ranged between 0.05 and 3.26 ng/mL. The nano-HPLC-HRMS developed here was successful in measuring GnRH, representing therefore a suitable technique to quantify GnRH in ewe plasma and to detect it in other matrices and species.


Assuntos
Androgênios , Hormônio Liberador de Gonadotropina , Gravidez , Ovinos , Feminino , Animais , Humanos , Projetos Piloto , Hormônio Liberador de Gonadotropina/metabolismo , Cromatografia Líquida de Alta Pressão , Isoformas de Proteínas
4.
J Chem Neuroanat ; 125: 102161, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36100131

Assuntos
Encéfalo , Hipotálamo
5.
J Chem Neuroanat ; 125: 102149, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36058434

RESUMO

In mammals, reproductive function is under the control of hypothalamic neurons named Gonadotropin-Releasing Hormone (GnRH) neurons. These neurons migrate from the olfactory placode to the brain, during embryonic development. For the past 40 years, these neurons have been considered an example of tangential migration, i.e., dependent on the olfactory/vomeronasal/terminal nerves. Numerous studies have highlighted the factors involved in the migration of these neurons but thus far overlooked the cellular microenvironment that produces them. Many of these factors are dysregulated in hypogonadotropic hypogonadism, resulting in subfertility/infertility. Nevertheless, over the past ten years, several papers have reported the influence of glial cells (named olfactory ensheathing cells [OECs]) in the migration and differentiation of GnRH neurons. This review will describe the atypical origins, migration, and differentiation of these neurons, focusing on the latest discoveries. There will be a more specific discussion on the involvement of OECs in the development of GnRH neurons, during embryonic and perinatal life; as well as on their potential implication in the development of congenital or idiopathic hypogonadotropic hypogonadism (such as Kallmann syndrome).


Assuntos
Hormônio Liberador de Gonadotropina , Síndrome de Kallmann , Animais , Adulto , Humanos , Movimento Celular/fisiologia , Neuroglia , Neurônios/fisiologia , Mamíferos
6.
J Chem Neuroanat ; 114: 101944, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33716103

RESUMO

Since the early eighties MRI has become the most powerful technic for in-vivo imaging particularly in the field of brain research. This non-invasive method allows acute anatomical observations of the living brain similar to post-mortem dissected tissues. However, one of the main limitation of MRI is that it does not make possible the neurochemical identification of the tissues conversely to positron emission tomography scanner which can provide a specific molecular characterization of tissue, in spite of poor anatomical definition. To gain neurochemical information using MRI, new categories of contrast agents were developed from the beginning of the 2000's, particularly using the chemical-exchange saturation transfer (CEST) method. This method induces a significant change in the magnitude of the water proton signal and allows the detection of specific molecules within the tissues like sugars, amino acids, transmitters, and nucleosides. This short review presents several CEST contrast agents and their recent developments for in vivo detection of metabolites and neurotransmitters in the brain for research and clinical purposes.


Assuntos
Química Encefálica , Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Neuroimagem/métodos , Animais , Humanos
7.
Brain Struct Funct ; 223(7): 3297-3316, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29869133

RESUMO

The periaqueductal gray (PAG) is a mesencephalic brain structure organised in subdivisions with specific anatomical connections with the rest of the brain. These connections support the different PAG functions and especially its role in emotion. Mainly described in territorial and predatory mammals, examination of the PAG connections suggests an opposite role of the ventral and the dorsal/lateral PAG in passive and active coping style, respectively. In mammals, the organisation of PAG connections may reflect the coping style of each species. Based on this hypothesis, we investigated the anatomical connections of the PAG in sheep, a gregarious and prey species. Since emotional responses expressed by sheep are typical of active coping style, we focused our interest on the dorsal and lateral parts of the PAG. After injection of fluorogold and fluororuby, the most numerous connections occurred with the anterior cingulate gyrus, the anterior hypothalamic region, the ventromedial hypothalamic nucleus and the PAG itself. Our observations show that the sheep PAG belongs to the neuronal circuit of emotion and has specific parts as in other mammals. However, unlike other mammals, we observed very few connections between PAG and either the thalamic or the amygdalar nuclei. Interestingly, when comparing across species, the PAG connections of sheep were noticeably more like those previously described in other social species, rabbits and squirrel monkeys, than those in territorial species, rats or cats.


Assuntos
Comportamento Animal , Emoções , Neurônios/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Animais , Dextranos/administração & dosagem , Feminino , Corantes Fluorescentes/administração & dosagem , Vias Neurais/fisiologia , Técnicas de Rastreamento Neuroanatômico , Marcadores do Trato Nervoso/administração & dosagem , Substância Cinzenta Periaquedutal/citologia , Rodaminas/administração & dosagem , Carneiro Doméstico , Comportamento Social , Especificidade da Espécie , Estilbamidinas/administração & dosagem
9.
Eur J Neurosci ; 46(10): 2596-2607, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28973792

RESUMO

During mammalian embryonic development, GnRH neurones differentiate from the nasal placode and migrate through the nasal septum towards the forebrain. We previously showed that a category of glial cells, the olfactory ensheathing cells (OEC), forms the microenvironment of migrating GnRH neurones. Here, to characterize the quantitative and qualitative importance of this glial, we investigated the spatiotemporal maturation of glial cells in situ and the role of maturing glia in GnRH neurones development ex vivo. More than 90% of migrating GnRH neurones were found to be associated with glial cells. There was no change in the cellular microenvironment of GnRH neurones in the regions crossed during embryonic development as glial cells formed the main microenvironment of these neurones (53.4%). However, the phenotype of OEC associated with GnRH neurones changed across regions. The OEC progenitors immunoreactive to brain lipid binding protein formed the microenvironment of migrating GnRH neurones from the vomeronasal organ to the telencephalon and were also present in the diencephalon. However, during GnRH neurone migration, maturation of OEC to [GFAP+] state (glial fibrillary acid protein) was only observed in the nasal septum. Inducing depletion of OEC in maturation, using transgenic mice expressing herpes simplex virus thymidine kinase driven by the GFAP promoter, had no impact on neurogenesis or on triggering GnRH neurones migration in nasal explant culture. Nevertheless, depletion of [GFAP+] cells decreased GnRH neurites outgrowth by 57.4%. This study suggests that specific maturation of OEC in the nasal septum plays a role in morphological differentiation of GnRH neurones.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Neuritos/fisiologia , Neuroglia/fisiologia , Crescimento Neuronal , Neurônios/fisiologia , Bulbo Olfatório/crescimento & desenvolvimento , Animais , Movimento Celular , Camundongos , Camundongos Transgênicos , Septo Nasal/crescimento & desenvolvimento , Células-Tronco Neurais/fisiologia , Neuroglia/metabolismo , Neurônios/metabolismo , Bulbo Olfatório/metabolismo , Técnicas de Cultura de Órgãos , Células-Tronco , Órgão Vomeronasal/crescimento & desenvolvimento
10.
Stress ; 19(2): 198-205, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26941006

RESUMO

Postnatal treatment with bacterial endotoxin lipopolysaccharide (LPS) changes the activity of the hypothalamic-pituitary-gonadal (HPG) axis and the gonadotropin-releasing hormone (GnRH) surge in rats. Exposure to an immune challenge in the critical periods of development has profound and long-lasting effects on the stress response, immune, metabolic, and reproductive functions. Prenatal LPS treatment delays the migration of GnRH neurons associated with increased cytokine release in maternal and fetal compartments. We investigated the effects of a single maternal exposure to LPS (18 µg/kg, i.p.) on day 12 (embryonic day (E)12) of pregnancy on reproductive parameters in rat offspring. Hypothalamic GnRH content, plasma luteinizing hormone (LH), testosterone, and estradiol concentrations were measured in both male and female offsprings at different stages of postnatal development by RIA and ELISA (n = 10 each per group). Body weight and in females day of vaginal opening (VO) were recorded. In offspring exposed to LPS prenatally, compared with controls, body weight was decreased in both sexes at P5 and P30; in females, VO was delayed; hypothalamic GnRH content was decreased at postnatal days 30-60 (P30-P60) in both sexes; plasma LH concentration was decreased at P14-P60 in females; plasma concentrations of testosterone/estradiol were increased at P14 in females, and plasma estradiol was increased at P14 in males. Hence activation of the maternal immune system by LPS treatment at a prenatal critical period leads to decreased GnRH and LH levels in pre- and postpubertal life and sex steroid imbalance in the prepubertal period, and delayed sexual maturation of female offspring.


Assuntos
Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Exposição Materna , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Estradiol/sangue , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/metabolismo , Hormônio Luteinizante/sangue , Masculino , Gravidez , Ratos , Testosterona/farmacologia
11.
Endocrinology ; 157(1): 304-22, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26562259

RESUMO

Episodic release of GnRH is essential for reproductive function. In vitro studies have established that this episodic release is an endogenous property of GnRH neurons and that GnRH secretory pulses are associated with synchronization of GnRH neuron activity. The cellular mechanisms by which GnRH neurons synchronize remain largely unknown. There is no clear evidence of physical coupling of GnRH neurons through gap junctions to explain episodic synchronization. However, coupling of glial cells through gap junctions has been shown to regulate neuron activity in their microenvironment. The present study investigated whether glial cell communication through gap junctions plays a role in GnRH neuron activity and secretion in the mouse. Our findings show that Glial Fibrillary Acidic Protein-expressing glial cells located in the median eminence in close vicinity to GnRH fibers expressed Gja1 encoding connexin-43. To study the impact of glial-gap junction coupling on GnRH neuron activity, an in vitro model of primary cultures from mouse embryo nasal placodes was used. In this model, GnRH neurons possess a glial microenvironment and were able to release GnRH in an episodic manner. Our findings show that in vitro glial cells forming the microenvironment of GnRH neurons expressed connexin-43 and displayed functional gap junctions. Pharmacological blockade of the gap junctions with 50 µM 18-α-glycyrrhetinic acid decreased GnRH secretion by reducing pulse frequency and amplitude, suppressed neuronal synchronization and drastically reduced spontaneous electrical activity, all these effects were reversed upon 18-α-glycyrrhetinic acid washout.


Assuntos
Junções Comunicantes/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/metabolismo , Mucosa Olfatória/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Biomarcadores/metabolismo , Células Cultivadas , Conexina 43/genética , Conexina 43/metabolismo , Embrião de Mamíferos/citologia , Inibidores Enzimáticos/farmacologia , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Hormônio Liberador de Gonadotropina/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Cinética , Eminência Mediana/citologia , Eminência Mediana/efeitos dos fármacos , Eminência Mediana/metabolismo , Camundongos Transgênicos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Neuroglia/efeitos dos fármacos , Neuroglia/ultraestrutura , Neurotoxinas/farmacologia , Mucosa Olfatória/efeitos dos fármacos , Mucosa Olfatória/ultraestrutura , Proteínas Recombinantes de Fusão/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/ultraestrutura , Técnicas de Cultura de Tecidos
12.
Therapie ; 70(4): 351-7, 2015.
Artigo em Francês | MEDLINE | ID: mdl-25997721

RESUMO

In Europe, rules relating to the designation and the protection of orphan drug are derived from regulation (EC) 141/2000 of the European Parliament and Council of 16 December 1999, specified by the implementing Regulation (EC) 847/2000. According to these regulations, obtaining the status of orphan drugs implies, in particular, to demonstrate the absence of any satisfying alternative treatment, or, by default, the significant benefit offered by the concerned drug. In the same sense, medicinal product similar to an original orphan medicinal product but safer, more effective or otherwise clinically superior, will benefit from a derogation to the rules on the 10 years market exclusivity usually provided for these products. This article analyses the concept of significant benefit, namely, the clinically relevant advantage or a major contribution to patient care, in particular in the case of similar drugs, as well as the elements to be provided by the sponsor in order to justify this benefit, and the options under which, where there are few or a lack of clinical data on a concerned orphan medicinal products, the demonstration of the significant benefit can rely on assumptions.


Assuntos
Indústria Farmacêutica/legislação & jurisprudência , Produção de Droga sem Interesse Comercial/legislação & jurisprudência , Indústria Farmacêutica/economia , Europa (Continente) , Humanos , Produção de Droga sem Interesse Comercial/economia , Produção de Droga sem Interesse Comercial/normas , Estados Unidos , United States Food and Drug Administration
13.
Endocrinology ; 154(6): 2114-28, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23554453

RESUMO

The sulfated neurosteroids pregnenolone sulfate (Δ(5)PS) and dehydroepiandrosterone sulfate (DHEAS) are known to play a role in the control of reproductive behavior. In the frog Pelophylax ridibundus, the enzyme hydroxysteroid sulfotransferase (HST), responsible for the biosynthesis of Δ(5)PS and DHEAS, is expressed in the magnocellular nucleus and the anterior preoptic area, two hypothalamic regions that are richly innervated by GnRH1-containing fibers. This observation suggests that GnRH1 may regulate the formation of sulfated neurosteroids to control sexual activity. Double labeling of frog brain slices with HST and GnRH1 antibodies revealed that GnRH1-immunoreactive fibers are located in close vicinity of HST-positive neurons. The cDNAs encoding 3 GnRH receptors (designated riGnRHR-1, -2, and -3) were cloned from the frog brain. RT-PCR analyses revealed that riGnRHR-1 is strongly expressed in the hypothalamus and the pituitary whereas riGnRHR-2 and -3 are primarily expressed in the brain. In situ hybridization histochemistry indicated that GnRHR-1 and GnRHR-3 mRNAs are particularly abundant in preoptic area and magnocellular nucleus whereas the concentration of GnRHR-2 mRNA in these 2 nuclei is much lower. Pulse-chase experiments using tritiated Δ(5)P and DHEA as steroid precursors, and 3'-phosphoadenosine 5'-phosphosulfate as a sulfonate moiety donor, showed that GnRH1 stimulates, in a dose-dependent manner, the biosynthesis of Δ(5)PS and DHEAS in frog diencephalic explants. Because Δ(5)PS and DHEAS, like GnRH, stimulate sexual activity, our data strongly suggest that some of the behavioral effects of GnRH could be mediated via the modulation of sulfated neurosteroid production.


Assuntos
Sulfato de Desidroepiandrosterona/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Pregnenolona/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Diencéfalo/efeitos dos fármacos , Diencéfalo/metabolismo , Perfilação da Expressão Gênica , Hormônio Liberador de Gonadotropina/farmacologia , Hibridização In Situ , Masculino , Microscopia Confocal , Dados de Sequência Molecular , Neurônios/metabolismo , Hipófise/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ranidae , Receptores LHRH/genética , Receptores LHRH/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Sulfotransferases/metabolismo
14.
Glia ; 61(4): 550-66, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23404564

RESUMO

During development, GnRH-1 neurons differentiate extracerebraly from the nasal placode and migrate from the vomeronasal organ to the forebrain along vomeronasal and terminal nerves. Numerous studies have described the influence of different molecules on the migration of GnRH-1 neurons, however, the role of microenvironment cells remains poorly understood. This study used GFAP-GFP transgenic mice to detect glial cells at early developmental stages. Using nasal explant cultures, the comigration of glial cells with GnRH-1 neurons was clearly demonstrated. This in vitro approach showed that glial cells began migrating from the explants before GnRH-1 neurons. They remained ahead of the GnRH-1 migratory front and stopped migrating after the GnRH-1 neurons. The association of these glial cells with the axons combined with gene expression analysis of GFAP-GFP sorted cells enabled them to be identified as olfactory ensheathing cells (OEC). Immunohistochemical analysis revealed the presence of multiple glial cell-type markers showing several OEC subpopulations surrounding GnRH-1 neurons. Moreover, these OEC expressed genes whose products are involved in the migration of GnRH-1 neurons, such as Nelf and Semaphorin 4. In situ data confirmed that the majority of the GnRH-1 neurons were associated with glial cells along the vomeronasal axons in nasal septum and terminal nerves in the nasal forebrain junction as early as E12.5. Overall, these data demonstrate an OEC microenvironment for migrating GnRH-1 neurons during mouse development. The fact that this glial cell type precedes GnRH-1 neurons and encodes for molecules involved in their nasal migration suggests that it participates in the GnRH-1 system ontogenesis.


Assuntos
Movimento Celular/fisiologia , Microambiente Celular/fisiologia , Hormônio Liberador de Gonadotropina/fisiologia , Bulbo Olfatório/citologia , Bulbo Olfatório/embriologia , Mucosa Olfatória/citologia , Mucosa Olfatória/embriologia , Precursores de Proteínas/fisiologia , Animais , Células Cultivadas , Proteína Glial Fibrilar Ácida , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Bulbo Olfatório/metabolismo , Mucosa Olfatória/metabolismo , Técnicas de Cultura de Órgãos , Regiões Promotoras Genéticas/genética , Coelhos
15.
Therapie ; 67(2): 77-87, 2012.
Artigo em Francês | MEDLINE | ID: mdl-22850095

RESUMO

The Jardé law is adopted further to the Public Health Act No. 2004-806 which transposed into French law the Directive 2001/20/EC on clinical trials of medicinal products, made effective by the implementing Decree 2006-477 of April 26, 2006. The main novelty introduced by the Jardé law is to unify all "research organized and practiced on human beings for the development of biological or medical knowledge" and to facilitate its effective conduct, without however excluding from the scope of the law routine care and non-interventional research. The favorable opinion of the French Ethical Research Committee (comité de protection des personnes or "CCP") will now be required before launching any research on human beings, after validation of the risk/benefit ratio of said research. Applicable requirements and procedures - including information and consent - are adapted to each category of clinical research. New provisions are adopted to address special situations, previously forgotten. Finally, if Ethics committees were up until now freely chosen, they will, in two years' time, be randomly assigned. Thus, the Jardé law amends substantially the legal framework of clinical research in France. The question is whether these new national provisions will be compatible with those from the next revision of the so called "clinical trials" directive 2001/20/EC. In any case, the Jarde law will only come into force when all required implementing measures have been adopted.


Assuntos
Pesquisa Biomédica/legislação & jurisprudência , Ensaios Clínicos como Assunto/legislação & jurisprudência , Legislação Médica/tendências , Saúde Pública/legislação & jurisprudência , Pesquisa Biomédica/ética , Ensaios Clínicos como Assunto/ética , França , Humanos , Consentimento Livre e Esclarecido/legislação & jurisprudência , Legislação Médica/ética , Saúde Pública/ética , Risco , Experimentação Humana Terapêutica
16.
Therapie ; 67(1): 1-10, 2012.
Artigo em Francês | MEDLINE | ID: mdl-22487499

RESUMO

In France, the Médiator(®) scandal and the trauma it has created, are the source of Law n° 2011-2012 of 29 December 2011 on strengthening safety of drug and health products, intended by the Ministry of Labour, Employment and Health, adopted by the National Assembly and promulgated in order to restore confidence and enhance safety of drug and health products. This new law affects all stakeholders and health professionals impacts key points in the life cycle of the drug: MA, reimbursement, advertising, promotion, distribution, prescription, dispensing, and pharmacovigilance. It also provides for financial, administrative or criminal penalties, which are intended deterrent. Beyond strengthening constraints on safety of health products, this new law in France foreshadowed a revolution in behaviour, attitudes and overall scenery of the health system and no one today knows exactly the outline.


Assuntos
Legislação de Medicamentos/tendências , Sistemas de Notificação de Reações Adversas a Medicamentos/organização & administração , Indústria Farmacêutica/legislação & jurisprudência , Indústria Farmacêutica/tendências , Prescrições de Medicamentos/normas , Recall de Medicamento , Fenfluramina/efeitos adversos , Fenfluramina/análogos & derivados , França , Guias como Assunto , Humanos , Farmacovigilância , Segurança
17.
J Chem Neuroanat ; 43(1): 14-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21983419

RESUMO

In rodents, the neuropeptide galanin (Gal) is involved in controlling the release of gonadotrophin-releasing hormone (GnRH). In the female, this peptide is colocalized in a subpopulation of GnRH neurones and its expression is stimulated by oestradiol. In the ewe, the morphofunctional relationship between these two neuronal peptides is poorly understood. The morphological interaction between Gal and GnRH was studied in ewes treated with oestradiol or with colchicine and in control animals. Five ewes were treated for 6h with oestradiol implants, a treatment known to induce a preovulatory surge of GnRH, and compared with five control animals. In addition, four animals received an intracerebroventricular injection of colchicine known to increase the intracellular level of galanin immunoreactivity. The morphological relationship between the two peptides was investigated by immunofluorescence using specific antibodies on the same sections, and the results were analysed using confocal microscopy. In colchicine-treated ewes, numerous Gal-immunoreactive neurones were found in the preoptic area in the vicinity of GnRH-immunoreactive neurones, but the two peptides were never observed in the same neurone. In all animals, Gal-ir fibres were observed to be in apposition to GnRH-containing perikarya in the preoptic area and these appositions were more numerous in oestradiol-treated ewes than in control animals. In contrast with rodents, galanin was not colocalized with GnRH in the neurones of the preoptic area of ewes, but this peptide could control GnRH neuronal secretion through axosomatic interactions. However, the presence of synaptic contacts between galanin terminals and GnRH perikarya needs to be confirmed by electron microscopy. As in rodents and primates, galanin could mediate the positive feedback of oestradiol on GnRH neurones during the preovulatory surge in ewes.


Assuntos
Estradiol/farmacologia , Galanina/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Rede Nervosa/metabolismo , Neurônios/metabolismo , Área Pré-Óptica/metabolismo , Animais , Feminino , Rede Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Área Pré-Óptica/efeitos dos fármacos , Progesterona/farmacologia , Ovinos
18.
J Chem Neuroanat ; 40(4): 265-71, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20637857

RESUMO

It is assumed that hypothalamic somatostatin plays a dominant role in the regulation of growth of developing lambs. On the other side, neuropeptide Y (NPY) neurons of the arcuate (ARC) nucleus are potentially involved in the control of gonadotrophins in prepubertal lambs and also of growth hormone (GH) secretion in adults. This study therefore investigated whether the transition from the prepubertal to the peripubertal period is accompanied by changes in NPY-ir and NPY mRNA content in neurons of the ARC nucleus and their putative projections to somatostatin neurons in both the ARC and periventricular (PEV) nuclei. The hypothalami of prepubertal (17-week-old) and peripubertal (32-week-old) female lambs were compared using single and double-labelling immunohistochemistry, and hybridisation in situ for NPY. Single-labelling for NPY mRNA and NPY-ir was quantified by image analysis using a light microscope and expressed as the percent area stained and/or the integral density of the reaction. Double-labelling for NPY-somatostatin relationships was analysed by confocal microscopy. Our data suggest that there are no detectable changes in NPY-ir in the PEV nucleus in the period leading up to puberty, whereas both the distributional area and intensity of NPY-labelling in the ARC are significantly higher in peripubertal compared to prepubertal sheep. In contrast, NPY mRNA levels are higher in prepubertal than in peripubertal ewes in the ARC nucleus. Confocal microscopy suggests the existence of NPY-somatostatin axo-somatic contacts in both PEV and ARC nuclei. In the PEV nucleus, the number of close appositions between NPY-ir fibres and somatostatin-ir perikarya is higher in prepubertal than in peripubertal ewes, but in the ARC no such difference was observed. In conclusion, our observations suggest that there is decreased activity of the NPY neurons of the ARC nucleus closely related to somatostatin neurons in the PEV nucleus at the onset of puberty. The withdrawal of this NPY effect may allow a higher release of somatostatin, which consequently inhibits GH secretion and stops growth. Both peptides are involved in the transmission of signals leading to stop growth at puberty.


Assuntos
Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/crescimento & desenvolvimento , Regulação para Baixo/fisiologia , Crescimento/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Neuropeptídeo Y/fisiologia , Somatostatina/antagonistas & inibidores , Animais , Núcleo Arqueado do Hipotálamo/química , Ventrículos Cerebrais/química , Ventrículos Cerebrais/citologia , Ventrículos Cerebrais/crescimento & desenvolvimento , Regulação para Baixo/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Crescimento/genética , Neurônios/química , Neuropeptídeo Y/genética , Carneiro Doméstico , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Somatostatina/biossíntese , Somatostatina/fisiologia
19.
Eur J Neurosci ; 30(4): 639-50, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19659454

RESUMO

In sheep, the onset of filial bonding relies on early intake of colostrum. The aim of our work was to describe in the newborn lamb housed with its mother the immediate post-ingestive effects of colostrum intake, in terms of behaviour and brain activity. In Experiment 1, lambs received five nasogastric infusions of colostrum, or saline, or sham intubations during the first 6 h after birth. Mother-young interactions were recorded before and after the first, third and fifth infusions. The activity of the dam and of the young, which diminished over time in all groups, was temporarily increased in both partners just after each intubation procedure. The number of high-pitched bleats was significantly lower in lambs that received colostrum than in the sham group, suggesting soothing or satiating properties of colostrum. In Experiment 2, newborn lambs received a single nasogastric infusion of colostrum or saline 4.5 h after birth, or were sham intubated. Neuronal activation was investigated 1.5 h later for maximum c-Fos activity. Infusion of colostrum and saline induced different patterns of c-Fos-like immunoreactivity in the paraventricular and supraoptic nuclei of the hypothalamus as compared with the sham group. A specific oxytocinergic/vasopressinergic (OT/VSP) cell population in the paraventricular nucleus was activated following colostrum and saline infusion, but not sham intubation. Only colostrum induced the activation of the cortical amygdala and insular cortex, two structures involved in learning, associative processes, reward and emotion. We hypothesize that filial bonding may be triggered through colostrum-rewarded learning/calming processes and that the OT/VSP system may play a role.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/metabolismo , Colostro/fisiologia , Comportamento Materno/fisiologia , Apego ao Objeto , Animais , Animais Recém-Nascidos , Contagem de Células , Ingestão de Alimentos/fisiologia , Feminino , Imuno-Histoquímica , Lactação/fisiologia , Masculino , Neurofisinas/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ovinos , Coloração e Rotulagem , Tirosina 3-Mono-Oxigenase/metabolismo
20.
J Chem Neuroanat ; 38(4): 257-65, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19615441

RESUMO

The vagal motor system is involved in the regulation of cardiorespiratory and gastrointestinal functions. Vagal motor neurons are localized near or adjacent to catecholaminergic neurons, but their co-localisation seems species dependent, present in the cat but absent in the rabbit. In pig, a species commonly used as an experimental model in humans brain disorders (sudden infant death syndrome, hypoxia), the relationship is poorly understood. We aimed at describing the distribution of vagal motor neurons and tyrosine hydroxylase-immunoreactive (-ir) neurons by using a double staining method in combination with retrograde tracing of vagal efferent neurons. After fluorogold impregnation of the central part of the sectioned left cervical vagal trunk, two main vagal motor neuronal populations were located in the dorsal motor nucleus of the vagus nerve (DMX) and in the area of the nucleus ambiguus (Amb). Like in the human, the DMX was composed of different subpopulations of neurons with the same morphological characteristics. Immunohistochemistry of catecholaminergic synthesizing enzymes differentiated two main sites containing vagal motor populations: the dorsomedial and the ventrolateral medulla. TH-ir was rarely seen in vagal motor neurons of the DMX, but TH-ir neurons were present around the two main vagal motor neuronal populations that contained TH-ir fibres. The anatomical organisation of the vagal motor and the catecholaminergic neuronal systems are similar to those described in humans and suggest that the involvement of the catecholamines in the control of the vagal motor system may be similar in pigs and in humans.


Assuntos
Catecolaminas/biossíntese , Enzimas/metabolismo , Bulbo/enzimologia , Neurônios Motores/enzimologia , Sus scrofa/metabolismo , Nervo Vago/enzimologia , Anatomia Comparada , Animais , Vias Autônomas/citologia , Vias Autônomas/enzimologia , Mapeamento Encefálico , Dopamina beta-Hidroxilase/metabolismo , Feminino , Corantes Fluorescentes , Imuno-Histoquímica , Bulbo/citologia , Neurônios Motores/citologia , Marcadores do Trato Nervoso , Feniletanolamina N-Metiltransferase/metabolismo , Formação Reticular/citologia , Formação Reticular/enzimologia , Especificidade da Espécie , Estilbamidinas , Sus scrofa/anatomia & histologia , Tirosina 3-Mono-Oxigenase/metabolismo , Nervo Vago/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...